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The Friction Coefficient of a Lennard-Jones Fluid 
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A recent molecular dynamics (MD) study showed that the friction coefficient of 
a simple fluid is obtainable by the integral over the autocorrelation function 
(ACF) of the total force of a Brownian-type particle. The results indicated that 
mass ratios 50 ~< M/rn <~ 200 of the massive and the light particle suffice to yield 

accurate friction coefficients. Complementarily, we calculate the random force 
ACF of the light particle, which is the memory function force of the ACF of the 
velocity apart from a constant factor, for all the states of the Lennard-Jones 
system investigated previously. A detailed comparison is presented of the 
memory function, the total force ACF of the fluid particle, and the total force 
ACF of the massive particle. The MD results confirm quantitatively our 
theoretical predictions: (i) on a time scale corresponding to the dynamics of the 
massive particle the total force ACF of that particle approximates well the 
memory function, while there are slight differences between them on a short 
time scale, (ii) the total force ACF of the liquid particle deviates significantly 
from the memory function already after extremely short time and is thus com- 
pletely useless for the determination of the friction coefficient, (iii) using the 
total force ACF of a heavy particle for the determination of the friction constant 
with mass ratios of M/m = 50 up to 200, the pseudo plateau value of the time 
integral is often not very noticeable, as the memory function is only 
approximated and the total force ACF of the massive particle has a negative 
part at medium times. In those cases the integration has to be extended to 
include the negative part. 
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1. I N T R O D U C T I O N  

In a previous report, (~) we showed that the total force autocorrelation 
function (FACF) of a massive particle immersed in a fluid of much lighter 
particles may successfully be used to determine the friction coefficient ~ of a 
model fluid by molecular dynamics (MD) calculations. Depending on the 
thermodynamic state, the mass of the heavy particle M has to be chosen to 
be factor of 50-150 times larger than that of the fluid particle m to generate 
friction coefficients in good agreement with values obtained by the integral 
over the velocity ACF of the light particle as usually exploited for the 
determination of this transport coefficient. 

However, the pseudo plateau value of the integral of the total FACF 
of the massive particle appeared only when a suitable mass ratio M/m was 
chosen with some experience. Moderate increase of this ratio did not lead 
to more pronounced pseudoplateaus. 

Though some of these features were explained by artificial effects 
introduced by the MD method, there remained open questions concerning 
the form of the total FACF of the massive particle depending on the mass 
ratio. 

To clarify these points, we present here quantitative results for the 
total FACF of the light and the massive particle as well as the ACF of the 
random force, which is essentially represented by the memory function of 
the velocity ACF of the light particle. The Lennard-Jones fluid is con- 
sidered as in the previous study and particlular interest is focused on the 
comparison of the total FACF of the massive particle with the memory 
function of the light particle. The latter functions may expected to be equal 
for sufficiently short times, as both functions give the same nearly mass 
independent friction coefficient ~ via the corresponding time integral when 
the ratio M/m is chosen large enough. In our previous analysis, (1t we 
showed that the total FACF of the heavy atom is given by the following 
expression: 

(F(0) F( t ) )  = 3q~(t) - 3({2/M)kn Te -(r (1) 

where ~0(t) is the random foce ACF defined according to the Langevin 
dynamics (see, for instance, refs. 2 and 5). k~ denotes the Boltzmann 
constant and T the temperature. The brackets ( . . . )  indicate the thermal 
average. It was furthermore shown that integration of ( F ( 0 ) F ( t ) )  yields 
the friction coefficient when the integration is only performed for a certain 
time period % ~ M/~. In that case the second term of the right-hand side of 
Eq. (1) should make a negligible contribution, while the first term of the 
right-hand side of Eq. (1) gives ft. We have 

~= kBTJo ~ o ( t ) d t ~ J  ~ q)(t)dt~3kBTJo (F(O)F(t))dt (2) 
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In Section 2 we derive another expression for ( which is exactly of the form 
as the first part of Eq. (2), where, however, the integral extends over the 
memory function of the velocity ACF of the fluid particle. So the 
normalized integrand of the memory function and the third part of Eq. (2) 
should be equal for a certain time interval, at least on a time scale 
associated with the dynamics of the massive particle. We confirm this by 
our MD calculations, but we further more demonstrate that on the time 
scale of the dynamics of the fluid particle there appear small differences 
between these functions which are, however, in accordance with our predic- 
tions. 

2. THE M E M O R Y  FUNCTION OF THE VELOCITY ACF OF THE 
LIGHT PARTICLE ( R A N D O M  FORCE ACF)  

Treating a fluid particle itself rather than a Brownian particle 
dissolved in the fluid, the motion may be described by the generalized 
Langevin equation. This equation accounts for the "memory" of a particle 
colliding with the surrounding particles. (3) The generalized Langevin 
equation represents a special case of the memory function equation for a 
certain dynamic variable. We derive here an expression for the friction 
coefficient ~, using the memory function formalism without detailed 
comment. (2-4) 

Denoting the normalized velocity ACF by 0(t) and the memory 
function by M(t), we have (ref. 2, p. 250) 

@(t) = -fo' dt' M ( t -  t') ~9(t') (3) 

as the defining equation for the memory function, with 

(v(O) v(O) ~(t) = 
<v(O) v(O)> 

where v denotes the particle velocity. 
The Fourier-Laplace transform of Eq. (3) reads then 

~(s)  = 1~Is + ~(s)] 

where s denotes the Laplace variable and the tilde denotes the transformed 
function. 

For s = 0 we find the expression 

~(0) = 1/M(O) (4) 
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Combining Eq. (4) with the Green-Kubo integral relation for the self- 
diffusion coefficient D in the Fourier-Laplace-transformed form, ~ we may 
write 

1 <v2> 
3 ~(0) 

where we have left out the time argument of the particle velocity to indicate 
the time-independent value of the ACF. Transforming into the time regime 
and exploiting the Einstein relation ~ = k s  T /D,  we obtain 

= m M ( t )  dt (5) 

Equation (5) is exactly of the form of the first part of Eq. (2), noting that 
M ( t )  has been "normalized" by (v2>, and differs further only by a factor 
m 2 from a force ACF. 

So the memory function of the velocity ACF is the stochastic FACF 
(apart from a mass factor), which is approximatively given by the total 
FACF of the massive particle, if we consider only a certain short time 
period r2. 

Equation (5) has been used in this work to determine ~, where M ( t )  

was obtained by MD, solving numerically the "Volterra equation" (3). We 
give details in the next section. 

To emphasize here the difference between the total FACF of the fluid 
particle and the memory function of the VACF of the fluid particle, we 
present an additional equation linking these functions. (2) Denoting the total 
FACF of a fluid atom normalized by the time-independent value of the 
VACF by 

<,(o) ~,(t) > 
~(t)- <v2> 

the memory function equation for 4~(t) reads in Laplace-transformed 
formulation 

~(s )  = ~(s) (6) 
1 - S - I ~ ( s )  

where M(s) is essentially the Fourier-Laplace transform of the memory 
function defined by Eq. (3). Converting Eq. (6) into the time regime, we 
find 

M ( t )  = q~(t) - dt' ~ ( t ' )  M ( t  - t ')  (7) 



Friction Coefficient of Lennard-Jones Fluid 319 

We see immediately that for t = 0, M(t) and ~b(t) are identical, as it should 
be. Equation (7) shows furthermore that for short times the behavior of 
M(t) and ~b(t) cannot differ greatly, as the contribution from the integral 
remains small. We confirm this quantitatively by the results in later sec- 
tions, but we also show that significant deviations between these functions 
occur already after very small times. 

3. S O L U T I O N  OF T H E  V O L T E R R A  E Q U A T I O N  

We saw that the determination of the friction coefficient reduces to the 
integral over the memory function of the VACF of a fluid particle (here- 
after referred to as the memory function). Unfortunately, the memory 
function M(t) is not directly accessible by MD calculations and one is left 
with the numerical solution of Eq. (3) or Eq. (7). These equations have the 
form of the Volterra differential equation for which quickly converging 
solution schemes exist/6) We have indeed used Eq. (7) for the deter- 
mination of M(t) by computing ~b(t) directly as the FACF and ~(t ')  as the 
time derivative of the VACF. Knowing these functions with sufficient 
accuracy, one can also obtain the memory function accurately. 

In the present case, the ACFs of the velocity and the total force of the 
fluid particle may be calculated very accurately due to their one-particle 
property. So we estimate the statistical error for the normalized ACFs to be 
smaller than 0.02 and that of the normalized memory function to be 
smaller than 0.03. Details of the algorithm adopted for the evaluation of 
M(t) can be found in the Appendix. 

4. T H E  M D  C A L C U L A T I O N S  

Our MD calculations for the Lennard-Jones fluid were performed in 
the same manner as described in ref. 1. However, the MD results for the 
Brownian-type particle were carried over from our previous work, and no 
additional computations were done. Thus, the present computations 
include only production runs of 5000 time steps, as sufficient for the 
accurate determination of the total FACF and the VACF. In most cases, 
we studied 256-particle systems, but considered also 108-particle systems 
for pilot investigations. The accuracy of the friction cofficient obtained by 
the velocity ACF or the memory function of the fluid particle via the 
integral amounts to 3-6 %, depending on the state point considered. 

To check the influence of the integration time step of the MD com- 
putation on the evaluation of the FACF and the subsequent determination 
of the memory function, we performed calculations with time increments of 

822/54/1-2-21 
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Table I. M D  Calculations 

I. Potential: Lennard-Jones (12-6), cutoff radius 2.5a 

ek~l = 119.8 K, a=3 .40 ~  

II. Runs 

Particle number 
Number of time steps for production 
Integration time step 
Mass of the fluid particle 

III. Computation times 

0.6 sec (108) per 100 steps (Cyber 205) 
1.9 see (256) per 100 steps (Cyber 205) 

[2 sec evaluation of the memory function (Cyber 855)] 

108--256 
5000 
10 -la sec -~ 0.0056(ma2/~) 1'2 
39.95 a.u. 

0.5 x 10 -14 and 10 14 sec. These computations indicated insignificant dif- 
ferences between the resulting functions. Table I summarizes some technical 
details of the present calculations. 

5. RESULTS FOR THE M E M O R Y  FUNCTION, THE TOTAL FACF 
OF THE FLUID PARTICLE, AND THE FACF OF A 
BROWNIAN-TYPE PARTICLE 

5.1. Liquid State 

5.1.1. Short-Time Behavior. For a l iquid state, state3 (see 
Table II), we show the short-time behavior of the normalized ACFs of the 
total force of the light and the heavy particle and the memory function in 
Figs. 1 and 2. Figure 2 indicates that the total FACF of the massive particle 
and the memory function behave very similarly, while the total FACF of 
the fluid particle decays more quickly than the former and has a pro- 
nounced negative part. On a larger time scale corresponding to M/~ the 
differences between the memory function and the total FACF of the 
massive particle would scarcely be noticeable, as expected from our 
introductory remarks. The plots in Figs. 1 and 2 are interesting from two 
points of view. First, considering Eq. (7), we may expect the total FACF of 
the fluid particle to decay more strongly than the memory function only for 
longer times, when the integral term subtracts significantly from the first 
term. We see, however, that there are remarkable differences between the 
two curves already after 10 -13 sec. So the total FACF of the light particle 
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Table II. Comparison of the Friction Coeff ic ient  a Computed via the 
Integral of the VACF and the Memory  Function of the Light Particle and as 

Integral over the Total FACF of the Massive Particle 

T* n* From From Memory From 
State ( _~ k B T/e) [ = (N/V) a 3 ] VACF function FACF 

1 0.70 0.85 7.5 7.5 7.4 
2 0.87 0.85 6.5 6.9 6.8 
3 0.98 0.85 6.4 6.0 6.4 
4 1.50 0.85 5.8 5.6 6.2 
5 1.97 0.85 5.6 5.4 5.5 

6 0.87 0.80 4.9 5.0 5.2 
7 0.98 0.80 4.9 4.9 5.1 
8 1.50 0.80 4.6 4.8 4.3 
9 1.97 0.80 4.7 4.8 4.6 

10 0.98 0.75 3.75 3.85 3.95 
11 1.50 0.75 3.70 3.70 3.65 
12 1.97 0.75 3.70 3.75 3.90 

a In Units of 10 J3 kgsec-i [divide by 0.3089x 10 -13 to convert into reduced units of 
(rne/a2)m]. The statistical error for the values in each column amounts to 3-6% (see 
Section 4). Mass ratios of 50 ~< M/m <~ 200 were used for the MD. 

cannot  be used as a good  shor t - t ime a p p r o x i m a t i o n  for the m e m o r y  
function.  Second,  Eq. (1) predicts  a weaker  decline of the to ta l  F A C F  of  

the massive par t ic le  c o m p a r e d  with the m e m o r y  funct ion for longer  times, 
when the exponent ia l  te rm subt rac ts  less from the first term. F igure  2 
co r robo ra t e s  this nicely for t imes between 0.1 and  0.2 psec. 

F igure  1 i l lustrates,  on the o ther  hand,  that  all three cor re la t ion  
funct ions are  equal  for very shor t  times, ~<0.03 psec. No te  tha t  our  plots  
present  these funct ions normal i zed  by their  init ial  values. 

In  Fig. 3 we compare  the to ta l  F A C F  of the Brownian- type  par t ic le  of 
different mass  ra t ios  with the m e m o r y  function. The  figure gives no 
ind ica t ion  of  a significant mass  ra t io  dependence  of the F A C F  of the heavy 
a tom.  Thus,  we m a y  conc lude  tha t  our  ca lcula t ions  a p p r o x i m a t e  well the 
a sympto t i c  l imit  M / m ~  oo, at  least  for the shor t  t ime range of  the 
dynamics .  This is consis tent  with our  previous  findings. 

5 .1 .2 .  B e h a v i o r  a t  Longer Times. F o r  longer  t imes the m e m o r y  
funct ion is c o m p a r e d  with the to ta l  A C F  of the massive part ic le  for two 

mass  ra t ios  in Fig. 4. We  see from this figure tha t  for the chosen l iquid 
state the m e m o r y  funct ion shows a very small  posi t ive b ranch  up to 
~1 .5  psec. Ne i the r  of the to ta l  F A C F s  of the Brownian- type  par t ic le  
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reproduces this behavior. The function corresponding to the higher mass 
ratio approximates this part of the memory function on average. So we 
may conclude that the "long-time" form of the total FACF of the 
Brownian-type particle is slightly affected by the mass ratio M/m, giving 
on average a better approximation of the memory function for larger 
M/m. We see, however, from the figure that we are discussing very small 
effects which are scarcely larger than the statistical errors involved in the 
computations. 

5.2. Fluid State 

For a fluid state, state point 5 (see Table II), we display the total 
FACF of the light and the heavy particle and the memory function in 
Fig. 5. As for the liquid state, the memory function decays more quickly 
than the total FACF of the massive particle and more slowly than the total 
FACF, as far as the short-time behavior is concerned. For larger times 
both the memory function and the total FACF of the light particle dis- 
appear, as we have ensured by several computations of these functions up 
to longer times. The total FACF of the massive particle shows a slight 
negative branch up to 1.5 psec, which is presented together with the 
memory function in Fig. 6. For clarity, the plot of the memory function is 
suppressed for t/> 0.5 psec. Since for this fluid state a further increase of the 
mass ratio by a factor 2 does not alter the form of the total FACF of the 
massive particle, we have omitted here also the plot for a higher mass ratio 
(compare Fig. 6 of ref. 1). Compared with the liquid state, the memory 
function here dies off very rapidly, in agreement with the findings for the 
VACF, which is known to have a long-time behavior only for the liquid 
state. (3) 

So we have confirmed our result already obtained for the liquid state 
that the short-time behavior of the total FACF of the massive particle 
deviates slightly from that of the memory function and does not depend on 
the mass ratio. In contrast to the liquid state, for the fluid state there is no 
influence of the mass ratio on the long-time behavior of the total FACF. 

6. THE D E T E R M I N A T I O N  OF THE FRICTION COEFFICIENT 
V IA  THE M E M O R Y  FUNCTION,  THE V A C F  OF THE 
LIGHT PARTICLE, A N D  THE TOTAL FACF OF THE 
M A S S I V E  PARTICLE 

For the 12 thermodynamic states previously investigated in ref. 1, we 
compare the friction coefficient obtained by integrating the memory 
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function and the VACF of the light particle as well as the total FACF of 
the massive particle in Table II. Our experience showed that an integration 
period of about 2.5 psec is satisfactory to obtain accurate values for all the 
considered states. The usual way of determining the friction coefficient or 
the self-diffusion coefficient is integration of the VACF or evaluation of the 
slope of the mean square displacement of a fluid particle. The latter method 
has previously been used by other authors ~9 11) to compute the self- 
diffusion coefficient of LJ argon for several states. We have compared in 
detail with the data provided by Erpenbeck ~n) and found very good 
agreement, including the particle number dependence of the results. 

The ~ values in Table II calculated in these three different ways also 
agree well within the indicated statistical errors. The friction coefficient 
evaluated by integration of the total FACF of the massive particle was 
computed by MD runs of mass ratios 50 ~< M/m <~ 200 and the integration 
was restricted to a range 1 ~< t ~< 2.5 psecJ ~) We see from the plots in Figs. 3 
and 4 that the total FACF of the massive particle approximates the 
memory function rather well, but exceeds the latter slightly at short times, 
which would lead to an overestimate of ~ if the integration were truncated 
after short time. For larger times, the total FACF of the massive particle 
has a negative part which lowers the integra! value subsequently when the 
integration is extended. Because of this behavior of the FACF, the pseudo 
plateau of the integral is not well detectable. For sufficient long times > r~ 
the integral value must in any case decrease with time, as we have shown in 
ref. 1 ! So, using mass ratios of 50 ~< M/m <~ 200 for the MD computations, 
there remains some uncertainty in the determination of ff via the total 
FACF of the Brownian-type particle. 

7. D ISCUSSION A N D  C O N C L U S I O N S  

We have shown that the memory function of the VACF of a light par- 
ticle of a LJ fluid containing additionally one massive particle can be well 
approximated by the total FACF of a massive particle on a time scale 
corresponding to M/( when M is chosen to be 50-200 times larger than the 
mass of the light particle. Differences between these functions appear, 
however, on a short time scale corresponding to the light particle 
dynamics, where the total FACF of the massive particle lies above the 
memory function for the initial time interval of about 0.25 psec and below 
it for the subsequent time interval of 0.25-1 psec. To determine accurately 
the friction coefficient by the total FACF of the massive particle, the 
integration has to be performed over a time interval which includes the 
second negative part of the FACF but excludes the long-time behavior of 
this function, which is always negative, as we saw in ref. 1. 
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Investigation of larger mass ratios of M/m > 1000 requires a modified 
MD integration algorithm to provide the accurate dynamics for such a 
model system. Even then, a much smaller integration time step is necessary, 
which would unreasonably enlarge the computation times to yield the 
correlation functions. For these very large mass ratios, we expect the 
memory function of the VACF of the light particle to be represented by the 
total FACF of the heavy particle to a very good approximation, even on a 
time scale comparable with the dynamics of the light atoms. On the other 
hand, mass ratios of 50-200 can be used to determine the friction coef- 
ficient from the total FACF of the heavy particle with reasonable accuracy 
when the integration is extended up to sufficiently long time of 1-2 psec. 

We should like to consider a molecular model potential for the 
Brownian particle to account more realistically for the large size of such 
a particle. 

A P P E N D I X  

Let y(t) be the normalized autocorrelation function of a dynamic 
variable A(t) 

(A(0) A(t)) 
y( t )=  (A(0)2) (A1) 

where the ( - )  denote the ensemble average; then y(t) is given by the 
generalized Langevin equation (7) 

9(t) = iOy(t)-  M(s) y ( t -  s) ds (A2) 

with 

i o  = A 0 )  = 0 

M(t), the memory function, is the autocorrelation function of the stochastic 
force f ( t )  (see Section 2): 

( f (O) f ( t ) )  
M(t )=  (A(0)2) (A3) 

with M(0)=  -j~(0), where 

(A(o) A(o)> 
?(0)= (A(0)2) (A4) 
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For A(t )  the velocity of a particle vi and denoting the total force on that 
particle by Fi=  m,i, we have 

M ( 0 ) -  (F~(0)2) 
2rnkB T 

Taking the time derivative of Eq. (A2), we obtain a Volterra-type integral 
equation for M(t): 

M(t )  = - f ~ ( t ) -  M(s)  ~ ( t - s )  ds (A5) 

For Eq. (A5) we may write out a discretized form: 

i 1 

M(ti)  = - f ~ ( t , ) -  ~ wjM(t j )  , 9 ( t , -  tj) (A6) 
j = 0  

where wj denotes a certain weighting factor depending on the numerical 
integration procedure. We used a combination of the ordinary Simpson 
rule and the so called "3/8"-quadrature formula, fi(t) was evaluated by a 
cubic spline with the boundary conditions p ( t = O ) = p ( t = t m a x ) = O .  In 
order to achieve quick converge, we exploited the MD total FACF of the 
light particle as the second derivative of y(t). 

Day (8) suggested a method of accurate evaluation of the starting 
values for Eq. (A6) based on replacing the integral in (A5) by various 
quadrature formulas. He obtained a system of three linear equations for 
M(tl), M(t2), and M(t3). In our case these equations have the following 
form: 

y ( t ,  ) q- 9 L l@( t l  ) M ( t o )  = --  M ( t l  ) - ~ A t p ( t l )  M ( t 2 )  - ~ A t p { t 2 )  M(t3) 

Y(t2) + �89 M(to)  = - 4 Atfi(tt) M ( t l )  - M(t2)  

j)(t3) + 3Atp(t3) M(to)  = - 9At~(t2) M ( t l )  - 9AtP(t~) M(t2)  - M(t3)  

where At is the time increment and to, tl, t2, and t3 are the first four time 
steps of y(t).  

We used the Gauss-Seidel algorithm with Pivot search and reiteration 
to solve this set of equations. 
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